Search:

Engineers

Professional and related occupations


Significant Points

  • Overall job opportunities in engineering are expected to be good, but will vary by specialty.
  • A bachelor’s degree in engineering is required for most entry-level jobs.
  • Starting salaries are among the highest of all college graduates.
  • Continuing education is critical for engineers as technology evolves.

Nature of Work

Engineers apply the principles of science and mathematics to develop economical solutions to technical problems. Their work is the link between scientific discoveries and the commercial applications that meet societal and consumer needs.

Many engineers develop new products. During this process, they consider several factors. For example, in developing an industrial robot, engineers precisely specify the functional requirements; design and test the robot’s components; integrate the components to produce the final design; and evaluate the design’s overall effectiveness, cost, reliability, and safety. This process applies to the development of many different products, such as chemicals, computers, power plants, helicopters, and toys.

In addition to design and development, many engineers work in testing, production, or maintenance. These engineers supervise production in factories, determine the causes of component failure, and test manufactured products to maintain quality. They also estimate the time and cost to complete projects. Supervisory engineers are responsible for major components or entire projects. (See the statement on engineering and natural sciences managers elsewhere in the Handbook.)

Engineers use computers extensively to produce and analyze designs; to simulate and test how a machine, structure, or system operates; to generate specifications for parts; and to monitor product quality and control process efficiency. Nanotechnology, which involves the creation of high-performance materials and components by integrating atoms and molecules, also is introducing entirely new principles to the design process.

Most engineers specialize. Following are details on the 17 engineering specialties covered in the Federal Government’s Standard Occupational Classification (SOC) system. Numerous other specialties are recognized by professional societies, and each of the major branches of engineering has numerous subdivisions. Civil engineering, for example, includes structural and transportation engineering, and materials engineering includes ceramic, metallurgical, and polymer engineering. Engineers also may specialize in one industry, such as motor vehicles, or in one type of technology, such as turbines or semiconductor materials.

Aerospace engineers design, develop, and test aircraft, spacecraft, and missiles and supervise the manufacture of these products. Those who work with aircraft are called aeronautical engineers, and those working specifically with spacecraft are astronautical engineers. Aerospace engineers develop new technologies for use in aviation, defense systems, and space exploration, often specializing in areas such as structural design, guidance, navigation and control, instrumentation and communication, or production methods. They also may specialize in a particular type of aerospace product, such as commercial aircraft, military fighter jets, helicopters, spacecraft, or missiles and rockets, and may become experts in aerodynamics, thermodynamics, celestial mechanics, propulsion, acoustics, or guidance and control systems.

Agricultural engineers apply knowledge of engineering technology and science to agriculture and the efficient use of biological resources. Because of this, they are also referred to as biological and agricultural engineers. They design agricultural machinery, equipment, sensors, processes, and structures, such as those used for crop storage. Some engineers specialize in areas such as power systems and machinery design; structures and environment engineering; and food and bioprocess engineering. They develop ways to conserve soil and water and to improve the processing of agricultural products. Agricultural engineers often work in research and development, production, sales, or management.

Biomedical engineers develop devices and procedures that solve medical and health-related problems by combining their knowledge of biology and medicine with engineering principles and practices. Many do research, along with life scientists, chemists, and medical scientists, to develop and evaluate systems and products such as artificial organs, prostheses (artificial devices that replace missing body parts), instrumentation, medical information systems, and health management and care delivery systems. Biomedical engineers may also design devices used in various medical procedures, imaging systems such as magnetic resonance imaging (MRI), and devices for automating insulin injections or controlling body functions. Most engineers in this specialty need a sound background in another engineering specialty, such as mechanical or electronics engineering, in addition to specialized biomedical training. Some specialties within biomedical engineering include biomaterials, biomechanics, medical imaging, rehabilitation engineering, and orthopedic engineering.

Chemical engineers apply the principles of chemistry to solve problems involving the production or use of chemicals and biochemicals. They design equipment and processes for large-scale chemical manufacturing, plan and test methods of manufacturing products and treating byproducts, and supervise production. Chemical engineers also work in a variety of manufacturing industries other than chemical manufacturing, such as those producing energy, electronics, food, clothing, and paper. They also work in health care, biotechnology, and business services. Chemical engineers apply principles of physics, mathematics, and mechanical and electrical engineering, as well as chemistry. Some may specialize in a particular chemical process, such as oxidation or polymerization. Others specialize in a particular field, such as nanomaterials, or in the development of specific products. They must be aware of all aspects of chemicals manufacturing and how the manufacturing process affects the environment and the safety of workers and consumers.

Civil engineers design and supervise the construction of roads, buildings, airports, tunnels, dams, bridges, and water supply and sewage systems. They must consider many factors in the design process, from the construction costs and expected lifetime of a project to government regulations and potential environmental hazards such as earthquakes and hurricanes. Civil engineering, considered one of the oldest engineering disciplines, encompasses many specialties. The major ones are structural, water resources, construction, environmental, transportation, and geotechnical engineering. Many civil engineers hold supervisory or administrative positions, from supervisor of a construction site to city engineer. Others may work in design, construction, research, and teaching.

Computer hardware engineers research, design, develop, test, and oversee the manufacture and installation of computer hardware. Hardware includes computer chips, circuit boards, computer systems, and related equipment such as keyboards, modems, and printers. (Computer software engineers—often simply called computer engineers—design and develop the software systems that control computers. These workers are covered elsewhere in the Handbook.) The work of computer hardware engineers is very similar to that of electronics engineers in that they may design and test circuits and other electronic components, but computer hardware engineers do that work only as it relates to computers and computer-related equipment. The rapid advances in computer technology are largely a result of the research, development, and design efforts of these engineers.

Electrical engineers design, develop, test, and supervise the manufacture of electrical equipment. Some of this equipment includes electric motors; machinery controls, lighting, and wiring in buildings; automobiles; aircraft; radar and navigation systems; and power generation, control, and transmission devices used by electric utilities. Although the terms electrical and electronics engineering often are used interchangeably in academia and industry, electrical engineers have traditionally focused on the generation and supply of power, whereas electronics engineers have worked on applications of electricity to control systems or signal processing. Electrical engineers specialize in areas such as power systems engineering or electrical equipment manufacturing.

Electronics engineers, except computer are responsible for a wide range of technologies, from portable music players to the global positioning system (GPS), which can continuously provide the location, for example, of a vehicle. Electronics engineers design, develop, test, and supervise the manufacture of electronic equipment such as broadcast and communications systems. Many electronics engineers also work in areas closely related to computers. However, engineers whose work is related exclusively to computer hardware are considered computer hardware engineers. Electronics engineers specialize in areas such as communications, signal processing, and control systems or have a specialty within one of these areas—control systems or aviation electronics, for example.

Environmental engineers develop solutions to environmental problems using the principles of biology and chemistry. They are involved in water and air pollution control, recycling, waste disposal, and public health issues. Environmental engineers conduct hazardous-waste management studies in which they evaluate the significance of the hazard, advise on treatment and containment, and develop regulations to prevent mishaps. They design municipal water supply and industrial wastewater treatment systems. They conduct research on the environmental impact of proposed construction projects, analyze scientific data, and perform quality-control checks. Environmental engineers are concerned with local and worldwide environmental issues. They study and attempt to minimize the effects of acid rain, global warming, automobile emissions, and ozone depletion. They may also be involved in the protection of wildlife. Many environmental engineers work as consultants, helping their clients to comply with regulations, to prevent environmental damage, and to clean up hazardous sites.

Health and safety engineers, except mining safety engineers and inspectors prevent harm to people and property by applying knowledge of systems engineering and mechanical, chemical, and human performance principles. Using this specialized knowledge, they identify and measure potential hazards, such as the risk of fires or the dangers involved in handling of toxic chemicals. They recommend appropriate loss prevention measures according to the probability of harm and potential damage. Health and safety engineers develop procedures and designs to reduce the risk of illness, injury, or damage. Some work in manufacturing industries to ensure the designs of new products do not create unnecessary hazards. They must be able to anticipate, recognize, and evaluate hazardous conditions, as well as develop hazard control methods.

Industrial engineers determine the most effective ways to use the basic factors of production—people, machines, materials, information, and energy—to make a product or provide a service. They are primarily concerned with increasing productivity through the management of people, methods of business organization, and technology. To maximize efficiency, industrial engineers carefully study the product requirements and design manufacturing and information systems to meet those requirements with the help of mathematical methods and models. They develop management control systems to aid in financial planning and cost analysis, and design production planning and control systems to coordinate activities and ensure product quality. They also design or improve systems for the physical distribution of goods and services and determine the most efficient plant locations. Industrial engineers develop wage and salary administration systems and job evaluation programs. Many industrial engineers move into management positions because the work is closely related to the work of managers.

Marine engineers and naval architects are involved in the design, construction, and maintenance of ships, boats, and related equipment. They design and supervise the construction of everything from aircraft carriers to submarines, and from sailboats to tankers. Naval architects work on the basic design of ships, including hull form and stability. Marine engineers work on the propulsion, steering, and other systems of ships. Marine engineers and naval architects apply knowledge from a range of fields to the entire design and production process of all water vehicles. Other workers who operate or supervise the operation of marine machinery on ships and other vessels sometimes may be called marine engineers or, more frequently, ship engineers, but they do different work and are covered under water transportation occupations elsewhere in the Handbook.

Materials engineers are involved in the development, processing, and testing of the materials used to create a range of products, from computer chips and aircraft wings to golf clubs and snow skis. They work with metals, ceramics, plastics, semiconductors, and composites to create new materials that meet certain mechanical, electrical, and chemical requirements. They also are involved in selecting materials for new applications. Materials engineers have developed the ability to create and then study materials at an atomic level, using advanced processes to replicate the characteristics of materials and their components with computers. Most materials engineers specialize in a particular material. For example, metallurgical engineers specialize in metals such as steel, and ceramic engineers develop ceramic materials and the processes for making them into useful products such as glassware or fiber optic communication lines.

Mechanical engineers research, design, develop, manufacture, and test tools, engines, machines, and other mechanical devices. Mechanical engineering is one of the broadest engineering disciplines. Engineers in this discipline work on power-producing machines such as electric generators, internal combustion engines, and steam and gas turbines. They also work on power-using machines such as refrigeration and air-conditioning equipment, machine tools, material handling systems, elevators and escalators, industrial production equipment, and robots used in manufacturing. Mechanical engineers also design tools that other engineers need for their work. In addition, mechanical engineers work in manufacturing or agriculture production, maintenance, or technical sales; many become administrators or managers.

Mining and geological engineers, including mining safety engineers find, extract, and prepare coal, metals, and minerals for use by manufacturing industries and utilities. They design open-pit and underground mines, supervise the construction of mine shafts and tunnels in underground operations, and devise methods for transporting minerals to processing plants. Mining engineers are responsible for the safe, economical, and environmentally sound operation of mines. Some mining engineers work with geologists and metallurgical engineers to locate and appraise new ore deposits. Others develop new mining equipment or direct mineral-processing operations that separate minerals from the dirt, rock, and other materials with which they are mixed. Mining engineers frequently specialize in the mining of one mineral or metal, such as coal or gold. With increased emphasis on protecting the environment, many mining engineers work to solve problems related to land reclamation and water and air pollution. Mining safety engineers use their knowledge of mine design and practices to ensure the safety of workers and to comply with State and Federal safety regulations. They inspect walls and roof surfaces, monitor air quality, and examine mining equipment for compliance with safety practices.

Nuclear engineers research and develop the processes, instruments, and systems used to derive benefits from nuclear energy and radiation. They design, develop, monitor, and operate nuclear plants to generate power. They may work on the nuclear fuel cycle—the production, handling, and use of nuclear fuel and the safe disposal of waste produced by the generation of nuclear energy—or on the development of fusion energy. Some specialize in the development of nuclear power sources for naval vessels or spacecraft; others find industrial and medical uses for radioactive materials, as in equipment used to diagnose and treat medical problems.

Petroleum engineers search the world for reservoirs containing oil or natural gas. Once these resources are discovered, petroleum engineers work with geologists and other specialists to understand the geologic formation and properties of the rock containing the reservoir, determine the drilling methods to be used, and monitor drilling and production operations. They design equipment and processes to achieve the maximum profitable recovery of oil and gas. Because only a small proportion of oil and gas in a reservoir flows out under natural forces, petroleum engineers develop and use various enhanced recovery methods. These include injecting water, chemicals, gases, or steam into an oil reservoir to force out more of the oil and doing computer-controlled drilling or fracturing to connect a larger area of a reservoir to a single well. Because even the best techniques in use today recover only a portion of the oil and gas in a reservoir, petroleum engineers research and develop technology and methods to increase recovery and lower the cost of drilling and production operations.

Work environment. Most engineers work in office buildings, laboratories, or industrial plants. Others may spend time outdoors at construction sites and oil and gas exploration and production sites, where they monitor or direct operations or solve onsite problems. Some engineers travel extensively to plants or worksites here and abroad.

Many engineers work a standard 40-hour week. At times, deadlines or design standards may bring extra pressure to a job, requiring engineers to work longer hours.

Qualifications

Engineers typically enter the occupation with a bachelor’s degree in an engineering specialty, but some basic research positions may require a graduate degree. Engineers offering their services directly to the public must be licensed. Continuing education to keep current with rapidly changing technology is important for engineers.

Education and training. A bachelor’s degree in engineering is required for almost all entry-level engineering jobs. College graduates with a degree in a natural science or mathematics occasionally may qualify for some engineering jobs, especially in specialties in high demand. Most engineering degrees are granted in electrical, electronics, mechanical, or civil engineering. However, engineers trained in one branch may work in related branches. For example, many aerospace engineers have training in mechanical engineering. This flexibility allows employers to meet staffing needs in new technologies and specialties in which engineers may be in short supply. It also allows engineers to shift to fields with better employment prospects or to those that more closely match their interests.

Most engineering programs involve a concentration of study in an engineering specialty, along with courses in both mathematics and the physical and life sciences. Many programs also include courses in general engineering. A design course, sometimes accompanied by a computer or laboratory class or both, is part of the curriculum of most programs. General courses not directly related to engineering, such as those in the social sciences or humanities, are also often required.

In addition to the standard engineering degree, many colleges offer 2-year or 4-year degree programs in engineering technology. These programs, which usually include various hands-on laboratory classes that focus on current issues in the application of engineering principles, prepare students for practical design and production work, rather than for jobs that require more theoretical and scientific knowledge. Graduates of 4-year technology programs may get jobs similar to those obtained by graduates with a bachelor’s degree in engineering. Engineering technology graduates, however, are not qualified to register as professional engineers under the same terms as graduates with degrees in engineering. Some employers regard technology program graduates as having skills between those of a technician and an engineer.

Graduate training is essential for engineering faculty positions and many research and development programs, but is not required for the majority of entry-level engineering jobs. Many experienced engineers obtain graduate degrees in engineering or business administration to learn new technology and broaden their education. Many high-level executives in government and industry began their careers as engineers.

About 1,830 programs at colleges and universities offer bachelor’s degrees in engineering that are accredited by the Accreditation Board for Engineering and Technology (ABET), Inc., and there are another 710 accredited programs in engineering technology. ABET accreditation is based on a program’s faculty, curriculum, and facilities; the achievement of a program’s students; program improvements; and institutional commitment to specific principles of quality and ethics. Although most institutions offer programs in the major branches of engineering, only a few offer programs in the smaller specialties. Also, programs of the same title may vary in content. For example, some programs emphasize industrial practices, preparing students for a job in industry, whereas others are more theoretical and are designed to prepare students for graduate work. Therefore, students should investigate curriculums and check accreditations carefully before selecting a college.

Admissions requirements for undergraduate engineering schools include a solid background in mathematics (algebra, geometry, trigonometry, and calculus) and science (biology, chemistry, and physics), with courses in English, social studies, and humanities. Bachelor’s degree programs in engineering typically are designed to last 4 years, but many students find that it takes between 4 and 5 years to complete their studies. In a typical 4-year college curriculum, the first 2 years are spent studying mathematics, basic sciences, introductory engineering, humanities, and social sciences. In the last 2 years, most courses are in engineering, usually with a concentration in one specialty. Some programs offer a general engineering curriculum; students then specialize on the job or in graduate school.

Some engineering schools have agreements with 2-year colleges whereby the college provides the initial engineering education, and the engineering school automatically admits students for their last 2 years. In addition, a few engineering schools have arrangements that allow students who spend 3 years in a liberal arts college studying pre-engineering subjects and 2 years in an engineering school studying core subjects to receive a bachelor’s degree from each school. Some colleges and universities offer 5-year master’s degree programs. Some 5-year or even 6-year cooperative plans combine classroom study and practical work, permitting students to gain valuable experience and to finance part of their education.

Licensure. All 50 States and the District of Columbia require licensure for engineers who offer their services directly to the public. Engineers who are licensed are called professional engineers (PE). This licensure generally requires a degree from an ABET-accredited engineering program, 4 years of relevant work experience, and successful completion of a State examination. Recent graduates can start the licensing process by taking the examination in two stages. The initial Fundamentals of Engineering (FE) examination can be taken upon graduation. Engineers who pass this examination commonly are called engineers in training (EIT) or engineer interns (EI). After acquiring suitable work experience, EITs can take the second examination, the Principles and Practice of Engineering exam. Several States have imposed mandatory continuing education requirements for relicensure. Most States recognize licensure from other States, provided that the manner in which the initial license was obtained meets or exceeds their own licensure requirements. Many civil, electrical, mechanical, and chemical engineers are licensed PEs. Independent of licensure, various certification programs are offered by professional organizations to demonstrate competency in specific fields of engineering.

Other qualifications. Engineers should be creative, inquisitive, analytical, and detail oriented. They should be able to work as part of a team and to communicate well, both orally and in writing. Communication abilities are becoming increasingly important as engineers frequently interact with specialists in a wide range of fields outside engineering.

Certification and advancement. Beginning engineering graduates usually work under the supervision of experienced engineers and, in large companies, also may receive formal classroom or seminar-type training. As new engineers gain knowledge and experience, they are assigned more difficult projects with greater independence to develop designs, solve problems, and make decisions. Engineers may advance to become technical specialists or to supervise a staff or team of engineers and technicians. Some may eventually become engineering managers or enter other managerial or sales jobs. In sales, an engineering background enables them to discuss a product’s technical aspects and assist in product planning, installation, and use. (See the statements under management and business and financial operations occupations, and the statement on sales engineers elsewhere in the Handbook.)

Numerous professional certifications for engineers exist and may be beneficial for advancement to senior technical or managerial positions. Many certification programs are offered by the professional societies listed as sources of additional information for engineering specialties at the end of this statement.

Employment

In 2006, engineers held about 1.5 million jobs. The distribution of employment by engineering specialty follows:

Job Outlook

Employment of engineers is expected to grow about as fast as the average for all occupations over the next decade, but growth will vary by specialty. Environmental engineers should experience the fastest growth, while civil engineers should see the largest employment increase. Overall job opportunities in engineering are expected to be good.

Overall employment change. Overall engineering employment is expected to grow by 11 percent over the 2006-16 decade, about as fast as the average for all occupations. Engineers have traditionally been concentrated in slower growing or declining manufacturing industries, in which they will continue to be needed to design, build, test, and improve manufactured products. However, increasing employment of engineers in faster growing service industries should generate most of the employment growth. Job outlook varies by engineering specialty, as discussed later.

Competitive pressures and advancing technology will force companies to improve and update product designs and to optimize their manufacturing processes. Employers will rely on engineers to increase productivity and expand output of goods and services. New technologies continue to improve the design process, enabling engineers to produce and analyze various product designs much more rapidly than in the past. Unlike in some other occupations, however, technological advances are not expected to substantially limit employment opportunities in engineering because engineers will continue to develop new products and processes that increase productivity.

Offshoring of engineering work will likely dampen domestic employment growth to some degree. There are many well-trained, often English-speaking engineers available around the world willing to work at much lower salaries than U.S. engineers. The rise of the Internet has made it relatively easy for part of the engineering work previously done by engineers in this country to be done by engineers in other countries, a factor that will tend to hold down employment growth. Even so, there will always be a need for onsite engineers to interact with other employees and clients.

Overall job outlook. Overall job opportunities in engineering are expected to be good because the number of engineering graduates should be in rough balance with the number of job openings between 2006 and 2016. In addition to openings from job growth, many openings will be created by the need to replace current engineers who retire; transfer to management, sales, or other occupations; or leave engineering for other reasons.

Many engineers work on long-term research and development projects or in other activities that continue even during economic slowdowns. In industries such as electronics and aerospace, however, large cutbacks in defense expenditures and in government funding for research and development have resulted in significant layoffs of engineers in the past. The trend toward contracting for engineering work with engineering services firms, both domestic and foreign, has also made engineers more vulnerable to layoffs during periods of lower demand.

It is important for engineers, as it is for workers in other technical and scientific occupations, to continue their education throughout their careers because much of their value to their employer depends on their knowledge of the latest technology. Engineers in high-technology areas, such as biotechnology or information technology, may find that technical knowledge becomes outdated rapidly. By keeping current in their field, engineers are able to deliver the best solutions and greatest value to their employers. Engineers who have not kept current in their field may find themselves at a disadvantage when seeking promotions or during layoffs.

Employment change and job outlook by engineering specialty.

Aerospace engineers are expected to have 10 percent growth in employment over the projections decade, about as fast as the average for all occupations. Increases in the number and scope of military aerospace projects likely will generate new jobs. In addition, new technologies expected to be used on commercial aircraft produced during the next decade should spur demand for aerospace engineers. The employment outlook for aerospace engineers appears favorable. The number of degrees granted in aerospace engineering has declined for many years because of a perceived lack of opportunities in this field. Although this trend has reversed, new graduates continue to be needed to replace aerospace engineers who retire or leave the occupation for other reasons.

Agricultural engineers are expected to have employment growth of 9 percent over the projections decade, about as fast as the average for all occupations. More engineers will be needed to meet the increasing demand for using biosensors to determine the optimal treatment of crops. Employment growth should also result from the need to increase crop yields to feed an expanding population and produce crops used as renewable energy sources. Moreover, engineers will be needed to develop more efficient agricultural production and conserve resources.

Biomedical engineers are expected to have 21 percent employment growth over the projections decade, much faster than the average for all occupations. The aging of the population and the focus on health issues will drive demand for better medical devices and equipment designed by biomedical engineers. Along with the demand for more sophisticated medical equipment and procedures, an increased concern for cost-effectiveness will boost demand for biomedical engineers, particularly in pharmaceutical manufacturing and related industries. However, because of the growing interest in this field, the number of degrees granted in biomedical engineering has increased greatly. Biomedical engineers, particularly those with only a bachelor’s degree, may face competition for jobs. Unlike many other engineering specialties, a graduate degree is recommended or required for many entry-level jobs.

Chemical engineers are expected to have employment growth of 8 percent over the projections decade, about as fast as the average for all occupations. Although overall employment in the chemical manufacturing industry is expected to decline, chemical companies will continue to research and develop new chemicals and more efficient processes to increase output of existing chemicals. Among manufacturing industries, pharmaceuticals may provide the best opportunities for jobseekers. However, most employment growth for chemical engineers will be in service-providing industries such as professional, scientific, and technical services, particularly for research in energy and the developing fields of biotechnology and nanotechnology.

Civil engineers are expected to experience 18 percent employment growth during the projections decade, faster than the average for all occupations. Spurred by general population growth and the related need to improve the Nation’s infrastructure, more civil engineers will be needed to design and construct or expand transportation, water supply, and pollution control systems and buildings and building complexes. They also will be needed to repair or replace existing roads, bridges, and other public structures. Because construction industries and architectural, engineering and related services employ many civil engineers, employment opportunities will vary by geographic area and may decrease during economic slowdowns, when construction is often curtailed.

Computer hardware engineers are expected to have 5 percent employment growth over the projections decade, slower than the average for all occupations. Although the use of information technology continues to expand rapidly, the manufacture of computer hardware is expected to be adversely affected by intense foreign competition. As computer and semiconductor manufacturers contract out more of their engineering needs to both domestic and foreign design firms, much of the growth in employment of hardware engineers is expected in the computer systems design and related services industry.

Electrical engineers are expected to have employment growth of 6 percent over the projections decade, slower than the average for all occupations. Although strong demand for electrical devices—including electric power generators, wireless phone transmitters, high-density batteries, and navigation systems—should spur job growth, international competition and the use of engineering services performed in other countries will limit employment growth. Electrical engineers working in firms providing engineering expertise and design services to manufacturers should have better job prospects.

Electronics engineers, except computer are expected to have employment growth of 4 percent during the projections decade, slower than the average for all occupations. Although rising demand for electronic goods—including communications equipment, defense-related equipment, medical electronics, and consumer products—should continue to increase demand for electronics engineers, foreign competition in electronic products development and the use of engineering services performed in other countries will limit employment growth. Growth is expected to be fastest in service-providing industries—particularly in firms that provide engineering and design services.

Environmental engineers should have employment growth of 25 percent during the projections decade, much faster than the average for all occupations. More environmental engineers will be needed to comply with environmental regulations and to develop methods of cleaning up existing hazards. A shift in emphasis toward preventing problems rather than controlling those that already exist, as well as increasing public health concerns resulting from population growth, also are expected to spur demand for environmental engineers. Because of this employment growth, job opportunities should be good even as more students earn degrees. Even though employment of environmental engineers should be less affected by economic conditions than most other types of engineers, a significant economic downturn could reduce the emphasis on environmental protection, reducing job opportunities.

Health and safety engineers, except mining safety engineers and inspectors are projected to experience 10 percent employment growth over the projections decade, about as fast as the average for all occupations. Because health and safety engineers make production processes and products as safe as possible, their services should be in demand as concern increases for health and safety within work environments. As new technologies for production or processing are developed, health and safety engineers will be needed to ensure that they are safe.

Industrial engineers are expected to have employment growth of 20 percent over the projections decade, faster than the average for all occupations. As firms look for new ways to reduce costs and raise productivity, they increasingly will turn to industrial engineers to develop more efficient processes and reduce costs, delays, and waste. This should lead to job growth for these engineers, even in manufacturing industries with slowly growing or declining employment overall. Because their work is similar to that done in management occupations, many industrial engineers leave the occupation to become managers. Many openings will be created by the need to replace industrial engineers who transfer to other occupations or leave the labor force.

Marine engineers and naval architects are expected to experience employment growth of 11 percent over the projections decade, about as fast as the average for all occupations. Strong demand for naval vessels and recreational small craft should more than offset the long-term decline in the domestic design and construction of large oceangoing vessels. Good prospects are expected for marine engineers and naval architects because of growth in employment, the need to replace workers who retire or take other jobs, and the limited number of students pursuing careers in this occupation.

Materials engineers are expected to have employment growth of 4 percent over the projections decade, slower than the average for all occupations. Although employment is expected to decline in many of the manufacturing industries in which materials engineers are concentrated, growth should be strong for materials engineers working on nanomaterials and biomaterials. As manufacturing firms contract for their materials engineering needs, employment growth is expected in professional, scientific, and technical services industries also.

Mechanical engineers are projected to have 4 percent employment growth over the projections decade, slower than the average for all occupations. This is because total employment in manufacturing industries—in which employment of mechanical engineers is concentrated—is expected to decline. Some new job opportunities will be created due to emerging technologies in biotechnology, materials science, and nanotechnology. Additional opportunities outside of mechanical engineering will exist because the skills acquired through earning a degree in mechanical engineering often can be applied in other engineering specialties.

Mining and geological engineers, including mining safety engineers are expected to have 10 percent employment growth over the projections decade, about as fast as the average for all occupations. Following a lengthy period of decline, strong growth in demand for minerals and increased use of mining engineers in the oil and gas extraction industry is expected to create some employment growth over the 2006-16 period. Moreover, many mining engineers currently employed are approaching retirement age, a factor that should create additional job openings. Furthermore, relatively few schools offer mining engineering programs, resulting in good job opportunities for graduates. The best opportunities may require frequent travel or even living overseas for extended periods of time as mining operations around the world recruit graduates of U.S. mining engineering programs.

Nuclear engineers are expected to have employment growth of 7 percent over the projections decade, about as fast as the average for all occupations. Most job growth will be in research and development and engineering services. Although no commercial nuclear power plants have been built in the United States for many years, nuclear engineers will be needed to operate existing plants and design new ones, including researching future nuclear power sources. They also will be needed to work in defense-related areas, to develop nuclear medical technology, and to improve and enforce waste management and safety standards. Nuclear engineers are expected to have good employment opportunities because the small number of nuclear engineering graduates is likely to be in rough balance with the number of job openings.

Petroleum engineers are expected to have 5 percent employment growth over the projections decade, more slowly than the average for all occupations. Even though most of the potential petroleum-producing areas in the United States already have been explored, petroleum engineers will increasingly be needed to develop new methods of extracting more resources from existing sources. Favorable opportunities are expected for petroleum engineers because the number of job openings is likely to exceed the relatively small number of graduates. Petroleum engineers work around the world and, in fact, the best employment opportunities may include some work in other countries.

Projections Data

Projections data from the National Employment Matrix
Occupational title
SOC Code
Employment, 2006
Projected
employment,
2016
Change, 2006-16
Detailed statistics
Number
Percent

Engineers

17-2000
1,512,000
1,671,000
160,000
11
PDF
zipped XLS

Aerospace engineers

17-2011
90,000
99,000
9,200
10
PDF
zipped XLS

Agricultural engineers

17-2021
3,100
3,400
300
9
PDF
zipped XLS

Biomedical engineers

17-2031
14,000
17,000
3,000
21
PDF
zipped XLS

Chemical engineers

17-2041
30,000
33,000
2,400
8
PDF
zipped XLS

Civil engineers

17-2051
256,000
302,000
46,000
18
PDF
zipped XLS

Computer hardware engineers

17-2061
79,000
82,000
3,600
5
PDF
zipped XLS

Electrical and electronics engineers

17-2070
291,000
306,000
15,000
5
PDF
zipped XLS

Electrical engineers

17-2071
153,000
163,000
9,600
6
PDF
zipped XLS

Electronics engineers, except computer

17-2072
138,000
143,000
5,100
4
PDF
zipped XLS

Environmental engineers

17-2081
54,000
68,000
14,000
25
PDF
zipped XLS

Industrial engineers, including health and safety

17-2110
227,000
270,000
43,000
19
PDF
zipped XLS

Health and safety engineers, except mining safety engineers and inspectors

17-2111
25,000
28,000
2,400
10
PDF
zipped XLS

Industrial engineers

17-2112
201,000
242,000
41,000
20
PDF
zipped XLS

Marine engineers and naval architects

17-2121
9,200
10,000
1,000
11
PDF
zipped XLS

Materials engineers

17-2131
22,000
22,000
900
4
PDF
zipped XLS

Mechanical engineers

17-2141
226,000
235,000
9,400
4
PDF
zipped XLS

Mining and geological engineers, including mining safety engineers

17-2151
7,100
7,800
700
10
PDF
zipped XLS

Nuclear engineers

17-2161
15,000
16,000
1,100
7
PDF
zipped XLS

Petroleum engineers

17-2171
17,000
18,000
900
5
PDF
zipped XLS

Engineers, all other

17-2199
170,000
180,000
9,400
6
PDF
zipped XLS

    NOTE: Data in this table are rounded. See the discussion of the employment projections table in the Handbook introductory chapter on Occupational Information Included in the Handbook.

Earnings

Earnings for engineers vary significantly by specialty, industry, and education. Variation in median earnings and in the earnings distributions for engineers in various specialties is especially significant. Table 2 shows wage-and-salary earnings distributions in May 2006 for engineers in specialties covered in this statement.

Table 2: Earnings distribution by engineering specialty, May 2006
Specialty Lowest 10% Lowest 25% Median Highest 25% Highest 10%

Aerospace engineers

59,610 71,360 87,610 106,450 124,550

Agricultural engineers

42,390 53,040 66,030 80,370 96,270

Biomedical engineers

44,930 56,420 73,930 93,420 116,330

Chemical engineers

50,060 62,410 78,860 98,100 118,670

Civil engineers

44,810 54,520 68,600 86,260 104,420

Computer hardware engineers

53,910 69,500 88,470 111,030 135,260

Electrical engineers

49,120 60,640 75,930 94,050 115,240

Electronics engineers, except computer

52,050 64,440 81,050 99,630 119,900

Environmental engineers

43,180 54,150 69,940 88,480 106,230

Health and safety engineers, except mining safety engineers and inspectors

41,050 51,630 66,290 83,240 100,160

Industrial engineers

44,790 55,060 68,620 84,850 100,980

Marine engineers and naval architects

45,200 56,280 72,990 90,790 113,320

Materials engineers

46,120 57,850 73,990 92,210 112,140

Mechanical engineers

45,170 55,420 69,850 87,550 104,900

Mining and geological engineers, including mining safety engineers

42,040 54,390 72,160 94,110 128,410

Nuclear engineers

65,220 77,920 90,220 105,710 124,510

Petroleum engineers

57,960 75,880 98,380 123,130 Over 145,600

All other engineers

46,080 62,710 81,660 100,320 120,610

In the Federal Government, mean annual salaries for engineers ranged from $75,144 in agricultural engineering to $107,546 in ceramic engineering in 2007.

As a group, engineers earn some of the highest average starting salaries among those holding bachelor’s degrees. Table 3 shows average starting salary offers for engineers, according to a 2007 survey by the National Association of Colleges and Employers.

Table 3: Average starting salary by engineering specialty and degree , 2007
Curriculum Bachelor's Master's Ph.D.

Aerospace/aeronautical/astronautical

$53,408 $62,459 $73,814

Agricultural

49,764

Architectural

48,664

Bioengineering and biomedical

51,356 59,240

Chemical

59,361 68,561 73,667

Civil

48,509 48,280 62,275

Computer

56,201 60,000 92,500

Electrical/electronics and communications

55,292 66,309 75,982

Environmental/environmental health

47,960

Industrial/manufacturing

55,067 64,759 77,364

Materials

56,233

Mechanical

54,128 62,798 72,763

Mining and mineral

54,381

Nuclear

56,587 59,167

Petroleum

60,718 57,000

Footnotes:
 (NOTE) Source: National Association of Colleges and Employers

Related Occupations

Engineers apply the principles of physical science and mathematics in their work. Other workers who use scientific and mathematical principles include architects, except landscape and naval; engineering and natural sciences managers; computer and information systems managers; computer programmers; computer software engineers; mathematicians; drafters; engineering technicians; sales engineers; science technicians; and physical and life scientists, including agricultural and food scientists, biological scientists, conservation scientists and foresters, atmospheric scientists, chemists and materials scientists, environmental scientists and hydrologists, geoscientists, and physicists and astronomers.

Sources of Additional Information

Information about careers in engineering is available from:

Information on ABET-accredited engineering programs is available from:

Those interested in information on the Professional Engineer licensure should contact:

  • National Council of Examiners for Engineering and Surveying, P.O. Box 1686, Clemson, SC 29633. Internet: http://www.ncees.org
  • National Society of Professional Engineers, 1420 King St., Alexandria, VA 22314. Internet: http://www.nspe.org

Information on general engineering education and career resources is available from:

  • American Society for Engineering Education, 1818 N St. NW., Suite 600, Washington, DC 20036. Internet: http://www.asee.org

Information on obtaining engineering positions with the Federal Government is available from the Office of Personnel Management through USAJOBS, the Federal Government’s official employment information system. This resource for locating and applying for job opportunities can be accessed through the Internet at http://www.usajobs.opm.gov or through an interactive voice response telephone system at (703) 724-1850 or TDD (978) 461-8404. These numbers are not toll free, and charges may result. For advice on how to find and apply for Federal jobs, see the Occupational Outlook Quarterly article ?How to get a job in the Federal Government,? online at http://www.bls.gov/opub/ooq/2004/summer/art01.pdf.

For more detailed information on an engineering specialty, contact societies representing the individual branches of engineering. Each can provide information about careers in the particular branch.

Aerospace engineers

  • Aerospace Industries Association, 1000 Wilson Blvd., Suite 1700, Arlington, VA 22209. Internet: http://www.aia-aerospace.org
  • American Institute of Aeronautics and Astronautics, Inc., 1801 Alexander Bell Dr., Suite 500, Reston, VA 20191. Internet: http://www.aiaa.org

Agricultural engineers

  • American Society of Agricultural and Biological Engineers, 2950 Niles Rd., St. Joseph, MI 49085. Internet: http://www.asabe.org

Biomedical engineers

  • Biomedical Engineering Society, 8401 Corporate Dr., Suite 140, Landover, MD 20785. Internet: http://www.bmes.org

Chemical engineers

  • American Chemical Society, Department of Career Services, 1155 16th St. NW., Washington, DC 20036. Internet: http://www.chemistry.org
  • American Institute of Chemical Engineers, 3 Park Ave., New York, NY 10016. Internet: http://www.aiche.org

Civil engineers

  • American Society of Civil Engineers, 1801 Alexander Bell Dr., Reston, VA 20191. Internet: http://www.asce.org

Computer hardware engineers

Electrical and electronics engineers

  • Institute of Electrical and Electronics Engineers?USA, 1828 L St. NW., Suite 1202, Washington, DC 20036. Internet: http://www.ieeeusa.org

Environmental engineers

  • American Academy of Environmental Engineers, 130 Holiday Court, Suite 100, Annapolis, MD 21401. Internet: http://www.aaee.net

Health and safety engineers

  • American Society of Safety Engineers, 1800 E Oakton St., Des Plaines, IL 60018. Internet: http://www.asse.org
  • Board of Certified Safety Professionals, 208 Burwash Ave., Savoy, IL 61874. Internet: http://www.bcsp.org

Industrial engineers

  • Institute of Industrial Engineers, 3577 Parkway Lane, Suite 200, Norcross, GA 30092. Internet: http://www.iienet.org

Marine engineers and naval architects

  • Society of Naval Architects and Marine Engineers, 601 Pavonia Ave., Jersey City, NJ 07306. Internet: http://www.sname.org

Materials engineers

Mechanical engineers

  • American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc., 1791 Tullie Circle NE., Atlanta, GA 30329. Internet: http://www.ashrae.org
  • American Society of Mechanical Engineers, 3 Park Ave., New York, NY 10016. Internet: http://www.asme.org
  • SAE International, 400 Commonwealth Dr., Warrendale, PA 15096. Internet: http://www.sae.org

Mining and geological engineers, including mining safety engineers

  • Society for Mining, Metallurgy, and Exploration, Inc., 8307 Shaffer Parkway, Littleton, CO 80127. Internet: http://www.smenet.org

Nuclear engineers

  • American Nuclear Society, 555 North Kensington Ave., La Grange Park, IL 60526. Internet: http://www.ans.org

Petroleum engineers

  • Society of Petroleum Engineers, P.O. Box 833836, Richardson, TX 75083. Internet: http://www.spe.org

Source: Bureau of Labor Statistics Occupational Outlook Handbook

Privacy Policy  |  California Residents: Do Not Sell My Personal Information  |  Disclosure: “What Determines Top/Best?”  |  Terms of Use  | 
© 2024 TriAd Media Solutions, Inc. All Rights Reserved

Disclosure: Not all programs are accelerated, available in all locations, or in both online and on-campus formats. The transferability of credits is subject to each school's transfer credit policy. Financial aid including grants, scholarships and loans may be available to those who qualify. Program lengths and outcomes vary according to each institution's specific curriculum and employment opportunities are not guaranteed. CompareTopSchools is a consumer information site that offers free ratings and recommendations of colleges and universities. We are an advertising-supported service and receive compensation from many of the schools that appear on our site. Compensation may impact which schools we rate and recommend and where those schools appear. CompareTopSchools takes into consideration several proprietary rules to determine how and where schools appear on our website. All opinions expressed on this site are our own, including, without limitation, our designation of a particular institution as being a "top" school.